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The results of Proudman & Pearson (1957) and Kaplun & Lagerstrom (1957) for 
a sphere and a cylinder are generalized to study an ellipsoid of revolution of large 
aspect ratio with its axis of revolution perpendicular to the uniform flow at 
infinity. The limiting case, where the Reynolds number based on the minor axis 
of the ellipsoid is small while the other Reynolds number based on the major 
axis is fixed, is studied. The following points are deduced: (1)  although the body 
is three-dimensional the expansion is in inverse power of the logarithm of the 
Reynolds number as the case of a two-dimensional circular cylinder; (2) the 
existence of the ends and the variation of the diameter along the axis of revolution 
have no effect on the drag to the first order; (3) ib formula for drag is obtained to 
higher order. 

1. Introduction 
Viscous flow at low Reynolds numbers past two-dimensional or three-dimen- 

sional objects has been studied extensively (cf. Oseen 1927 and Lamb 1932) 
with the aid of Stokes’s and Oseen’s equations. Recent work by Proudman & 
Pearson (1957) and Kaplun & Lagerstrom (1957) has clarified the relation of 
these solutions to asymptotic expansions of the Navier-Stokes equations. These 
solutions exhibit a marked difference between the two-dimensional and three- 
dimensional case. The results presented in this paper are based on one of the 
examples discussed by the author (Shi 1963) for the purpose of clarifying this 
difference, in particular by studying in detail the transition from the three- 
dimensional case to the two-dimensional case. For this purpose, flow-past bodies 
of large aspect ratio, i.e. bodies whose extension transverse to the flow is much 
larger than that parallel to the flow, is considered. In this paper we study the 
case of uniform flow past an ellipsoid of revolution whose half-axis parallel to 
the uniform flow at infinity is denoted by h and whose half-axis perpendicular 
to the uniform flow at infinity is denoted by L. Two Reynolds numbers may 
be formed, namely, Re = Uh/v and Re = UL/v.  We study the limiting case of Re 
tending to zero, Re being fixed. This clearly indicates the body is of large aspect 
ratio. In a recent paper, Breach (1961) has also studied all ellipsoids of revolution 
both prolate and oblate. His solutions, however, are valid only when the Rey- 
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nolds number based on the major axis tends to zero, while in our case the Rey- 
nolds number based on the major axis is not necessarily small. Furthermore, he 
only considers spheroids whose axis of symmetry is parallel to the undisturbed 
stream at infinity. In  our case, the axis of revolution of the ellipsoid is perpendicu- 
lar to the undisturbed stream a t  infinity. The method used here essentially 
follows the spirit of Proudman & Pearson (1957) and Kaplun & Lagerstrom 
(1957). The detailed expansion procedures and matching principles follow the 
work of Lagerstrom & Cole (1955) and Kaplun & Lagerstrom (1957). The present 
problem does not have rotational symmetry about an axis parallel to the uniform 
flow a t  infinity and, therefore, there exists no Stokes’s stream function. We 
obtain directly the expansions for velocity and pressure. The present problem 
can be solved by introducing several (more than two) simultaneous expansions, 
i.e. an ‘outer expansion’, a ‘shank expansion’ and two ‘end expansions’. The 
proper choice of variables for each expansion was discussed in detail by Shi 
(1963). The details are not repeated here. The details of the expansion procedures 
and the matching between them present certain interest, although certainly 
no new principles need to be introduced. In  the present case, the expansion 
procedures can be exhibited in detail and higher-order terms can be obtained. 
It is also of interest that the idea of an intermediate (rather than inner) expansion 
proposed by Lagerstrom & Kaplun (1957) is intimately involved and quite 
helpful in the present case. 

2. Formulation 
We consider viscous incompressible flow past an ellipsoid of revolution of large 

aspect ratio. The governing equations are the Navier-Stokes equations which in 
dimensional form are (4. V) q + p-1 vp = v v q ,  ( 1 4  

v.q = 0, (1 b )  
with the boundary conditions 

q = 0 on the body, 
q = Ui; p = p ,  at infinity, 

where i is the unit vector in the x-direction and the body is defined by 

r 2 / P  + 22/L2 = 1 P a )  
and r2 = x2 + y2. The other symbols in equations (1 a d )  have their usual meanings 
in fluid mechanics. If Oseen or outer variables (i.e. Si = UxJv) are used the 
body becomes 

Then for low Reynolds number flow (in the limit, Re -+ 0) the body shrinks 
to a needle of zero radius. Thus the outer limit or the leading term of the outer 
expansion (cf. equation ( 3 4 )  is go = i. Therefore, the outer flow (the flow far 
from the body) is governed by the Oseen equations (cf. equations (4a, b ) )  as 
expected. But this outer limit does not satisfy the boundary condition near the 
body (i.e. q = 0). Different limits must be introduced near the body as in the case 
of a sphere or cylinder. I n  the present case, three different inner limits are needed 
because the inner limit is not uniform near the body. A shank limit is introduced 

P2/Re2 + z”2/Re2 = 1. (2 b)  
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to study the flow near the body but not near the ends. A left-end limit and a 
right-end limit are introduced to study the flow near the left and right ends. 
respectively. 

3. Limits, expansions and associated equations 
In this section, we shall define the various limits needed in various regions. 

Proper expansions will then be introduced and the associated equations will be 
established in the corresponding regions. 

(a) Outer. As independent variables (outer variables) we use 

zi = UX,/V. (3a)  

The dependent variables are q* = q/ U and p* = (p -pw)/pU2. The outer 
limit is defined as the limit Re --f 0 for Re ,  zi fixed. Thus the Navier-Stokes 
equations can be written in terms of outer variables as 

(q* .a) q* + ap* = 02 4 ,  * 
a.q* = 0, 

where 0 and 0 2  are in terms of outer variables. The outer expansions for velocity 
and pressure are assumed to have the form 

q* = go+€gl+E2g2+ ..., ( 3 4  

(3 e )  p* = €p;+€=p;+ ..., 
where E is to be defined later. 

for g, are the Oseen equations 
The outer limit is go = i in the present study. Therefore the governing equations 

and the governing equations for g,(n 2 2) are 

o.g, = 0. ( 5 b )  

(b)  Shank. In  the shank region, - R e  < z" < R e ,  we use the following inde- 
pendent variables 

x* = x/h = ?/Re, y* = g/Re, 2 = Ux/v. (Gal 

The shank limit is defined as the limit Re -+ 0 for x*, y*, z" and R e  fixed. The 
dependent variables are 

q* = q/U = iU*+jV*+kW*, ( 6 b )  
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The Navier-Stokes equations in terms of shank variables are as follows: 

a u* au* au* ap+ 
ax* av* az ax* 

Re U* __ +Re V* __ + Re2 W* + -~ 

= 0. -+++Re-- 
au* av* aw* 
ax* ay* i l E  

The limiting equations for Re + 0 are 

and 

( 7 4  

The intermediate shank expansions of  velocity and pressure are assumed to 
have the form 

q* = u,+Eu1+€2~+ ..., (9a) 

p+ = po+ep1+e2p2+ ..., (96) 

where u,, p,, etc., are intermediate shank solutions which are functions of x*, 
y*, Z, Re and Re. The governing equation for uo andp,, u, andp,, etc., are equa- 
tions (8u-d). 

In  terms of shank variables, the body can be expressed as 

r*2+2”2/Re2 = 1. (10) 

At the shank limit, the body is then a finite ellipsoid of revolution. 

The left-end variables are defined as 
( c )  Left end. By symmetry, we shall concentrate on discussing the left end. 

X+ = b/Re2, yf = #/Re2, z+ = ( 2 +  Re)/Re2 = Z/Re2. (11) 

The left-end limit is defined as the limit Re + 0 for Re, x+, y+ and z+ fixed. In  
terms of left-end variables, the body is of the form 

2x+ Re2zf2 2z+ 
Re Re2 Re 

r+2 = - - - + O(Re)2. 
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Thus at  the left-end limit, the body becomes a semi-infinite paraboloid. If we 
define 

then, to the order of Re2, the body is 

T = = 1/2Re. ( 1 3 b )  

The intermediate left-end expansion is 

q* = vo+€v,+E2v2+ ..., ( 1 4 a )  

p++ = p;+&p;+E2p;+ .... (14b) 

The governing equations for v, (n 2 0) are three-dimensional Stokes equations 
andp++ = Rep+ = Re2p*. 

(a) Right end. By symmetry, the right-end variables are defined as 

x+ = $/Re2, y+ = ??/Re2, Z+ = ( E -  Re/Re2). ( 1 5 )  

(16a) 

( 1 6 b )  

Then the body may be expressed in terms of right-end variables as 

7+ = T, = 1/2Re, 

T+ = &{(z+ + 7,) + [(z+ + 7,)2 + r+-2]&}. where 

The intermediate right-end expansion is 

q* = W,+€W1+€2W2+ ..., 
p+f = p,;;+&p;+@p;+ .... 

In all the above expansions, E is defined as 

1 
log (4/Re) - y + + ' &(Re) = ( 1 7 4  

the significance of which will be apparent later. 

4. Determination of solutions 
Determination of go. As discussed previously, we know t ha t  the principal limit 

is go = i .  

Determination of u,. The intermediate shank solution is determined as 

U, = &(Re) h, 
Re2-? 1 

log r* - + log (-8-j + 51 
Re 

The corresponding pressure term po is obtained as 

p, = -€(Re) 2 ~ * / r * ~ .  ( 1 9 b )  

(19c) 

It is obvious that uo satisfies the governing equations (8) and the boundary 
condition 

h, = 0 on the body (i.e. r*2 = (Re2-Z2)/Re2). 
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Then, by the matching condition 

lim, [ i  - u,I = 0, (20) 
Re-0 

for ord f in some overlap domain, we can determine €(Re). To apply the matching 
condition (20) we write uo in terms of xf, y, and Z, where xf and yf are defined as 

Xf = q f ( R e ) ,  y j  = y”/f(Re); ( 2 1 4  

then UO - 1 + e  i logr,+logf(Re) 1 H 
Re2 - 22 

- 4 log 2 + 1) - Xf v, log r/ 
Re 2 

(21 b )  
1 Re2-Z2 Re2 
2 Re2 f2(Re) vf :] a 

- _ _ _ _  __ 

The limit lim, is defined as the limit Re -+ 0 for xj, yf and Re fixed. This and 
similar limit processes will be used very frequently in this paper. In  the present 
case, f(Re) = 1 corresponds to the outer limit andf(Re) = Re corresponds to the 
shank limit. The variables xt and yf are intermediate in the sense that 

Re < f(Re) < 1. 

The matching condition (20) is performed for Re <f(Re) < 1 in some overlap 
domain between the shank expansion and the outer expansion. In  general, 
when we apply matching conditions to any two expansions, we &st write both 
of these expansions in terms of variables which are intermediate between the 
limits of these two expansions such as xf and yr used in the present matching. 
Then we apply the proper matching conditions in some overlap domain and 
determine the various constants. In  the present case, we can see that the match- 
ing condition (20) is satisfied if €(Re) is chosen such that 

lim (-elogRe) = 1, 

hence, €(Re) may be assumed to satisfy a relation 

Re-tO 

-slogRe = 1+ble+b2e2+ ..., (22 b) 

where the b, can be normalized later. Note that in this case the overlap domain is 
very small. A sufficiently slow limit is obtained by taking 

f(Re) = l/log (l/Re). (22c) 

Similar matching conditions will be used between i and vo and i and wo. We 
shall omit the details in the subsequent discussion. 

Determination of vo.t In  the present case, a solution ll(x$) which satisfies the 
three-dimensional Stokes equations and the boundary condition 

l,(xf) = 0 on 7 = 70, 

t The author is indebted to one of the referees for pointing out that u,, v,, and w,, can also 
be obtained from the Stokes solution for an ellipsoid (cf. Lamb 1932) by certain limit 
processes. 
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can be obtained as 

l,(xt) = $i[log (7/7,) + 11 - $x+V+log~ - &roV+ (x+/T). (23) 

Then the intermediate left-end solution is determined as 

v, = €(Re) l,(xt), 
where the matching condition 

lim, li-v,[ = 0 
Re+O 

for ord f in some overIap domain is also satisfied. Thus v, is the correct inter- 
mediate solution. The corresponding pressure term is easily determined as 

Matching between u, and vo. The matching between u, and v, can be studied 
by expressing both of them in terms of intermediate variables (i.e. r, and z,) 
which are intermediate between the shank and the left-end variables: 

They are supposed to match at z+ -+ CQ and along r+2/z+ = r#zb = r*Z/Z = const. 
In  terms of intermediate variables, the body is a semi-infinite paraboloid and 
0 < p < 1.Thus 

Thus V, = €1, 
T = 4 r:/z, + O[Re2(l-D]. (27) 

and 

Therefore lim, Iuo-v,I = o 
Re+, 

for f(Re) = Re, and 0 < /3 < 1. In  fact they are matched to O(Rel-&). 

Determination of w,. Similarly, w, is easily determined as 

w, = E(hi[log (T+/T,)  + 11 - Qx+V+ log T+ - ~ T , V +  ( z + / T + ) } .  ( 3 1 4  

The corresponding pressure term is obtained as 

p ;  = - 8 2 log 7+/2x+. (31 b)  

The matching between wo and u, is exactly the same as between u, and v,. 
The details are not repeated here. 
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Uniformly valid expansion near the body. Since u0 matches to W, and v,, a 
uniformly valid expansion so near the body can, in principle, be obtained. In  
the present case, we can easily obtain so as follows: 

so = uo+vo+w,-v~-w& (32) 

where v; is the shank limit of v, and w; is the shank limit of wo. 

Determination of g,. g1 must satisfy the governing equation (4) and can be 
determined by the matching condition that it cancels the unbounded terms of 

limfi [(uo - i)/e] = i{log i: - log [(Re2 - Z2)/Re2] + 4 + b,} - 59 log P7 (33) 

for F -+ 0 and -Re < z" < Re. Similarly, g, is supposed to cancel the unbounded 
term of 

limf2 [(vo - i)/e] = $i (log ( [ Z 2  + P2]6 - 3) + 2b1 + log 2Re + l} 

- gza log ([? + Z2]* - Z), (34) 

for i: and Z small. Similarly, g, has to cancel the unbounded terms of 

limf, [(wo - i)/e] for P -+ 0, and 2 - Re + 0. 

From all these matching conditions, g, is dete.rmined as follows: 

For i: -+ 0, -Be < 2 < Re, we have 

g, = i (log P + y - log 4) - 5% log F + gi{El ($Re - 32") +El (+Re + +2)> 

1 exp[-+(Re+z")] -) +O(i:logP). (36) +-- -- exp [ - $(Re - z")] 1 
Re-z" Re-z" Rei-x" Re+2 

The function E,(x) (cf. Erdelyi 1953) i s  defined as 

E,(x) = - Ei( - x) = J: dt 

= -logy,x+e-z 
m-1 

(37 4 

where y = log yo 2 0.5772 is Euler's constant. For large value of x, an asymptotic 
expansion for E,(x) is 

El($)  =- 1 - - + - +  ... . (37 b)  1 "Y 5 : :: 
Thus E,(x) -+ 0 as x -+ co and E,(x) -+ logyox as x -+ 0. 

tion (33) for ? -+ 0 and -Re < x < Re. If we choose all b, = 0 except 
Equation (36) therefore shows that g, cancels the unbounded terms in equa- 

bl = -4+y-I0g4 ( 3 8 4  
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we have the same B as for the two-dimensional case which is 

8 = l/{log (4/Re) - y + i}. 
In addition, for 7 --f 0 and 2 --f 0, we have 

665 

( 3 8 b )  

gl = $i{log ( [s2 + - X) + y - log 4 + E,(Re)} - @zl log ( [ ~ 2  + PI* - Z) 

+ k(e-&/2Re- 1/2Re) + O(Z1ogX). (39) 

Thus it cancels the unbounded term in equation ( 3 4 ) .  This shows that g, is 
correctly determined as in equation (35). 

The corresponding pressure term is 

Determination of ul. u1 can be determined by the matching condition 

i+egl-(uG+eul) - 
- 0, lim, __ .- 

R e d  6 

for ord f l  in some overlap domain. In  the present case, u1 is then easily determined 
as 

( 4 2 )  u, = u;+u;l 

with u; = fi(2) uo, u; = k,(Z) u;, (43) 
uh = ek[log r* - 4 log {(Re2 - 22)/Re2)], (44) 

(45a) 

where 

f l (z")  = 4 [El(~Re-~2)+E,(~Re+~2)+log(Re-2)+log(Re+x")-2logRe] 

It can easily be shown that uh satisfies the governing equation (8c) and that u, 
satisfies the governing equations ( S a d )  and u1 = 0 on the body. By expressing 
u1 in terms of outer variables, the matching condition is obviously satisfied 
and therefore u1 is correctly determined. Thus we have 

p ,  = - B ( 2 f 1 ( Z )  .*/r*2). (46) 

Determination of v3 and wl. v1 can be determined by the matching condition 
that 

lim, i+egl-(v,,+evl) = 0, 
R e d  €2 

(47) 

for ordf, in some overlap domain. In the present case, v1 can be obtained as 
follows: 

with 

(48) 

(49a) 

v1 = v; + v;, 

v; = c1 v,, = &{E,(Re) - log Re - y + log 4} vo, 
v;" = D,v; = (e-&/2Re - 1/2Re) vh 

= (e-a/2Re - 1/2Re) &{klog (7/70) - V+(7 - 70 log T)}. (49 b )  

It can easily be shown that v1 satisfies the three-dimensional Stokes equations 
a,nd the matching condition (47). 
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The corresponding pressure term is obtained as 

pi = - &s[E,(Re) - log Re - y + log 41 a log~/ax+ + &€[1/2Re - e-Re/2Re] a log ~ / a z + .  

Similarly, by symmetry and by the matching condition that 
(50) 

for ord f2 in some overlap domain, w, andp; can be easily determined. The details 
are not repeated here. 

Matching between u1 and v1 (or wl). If we write u1 and v, (or w,) in terms of 
intermediate variables, we can easily show that they are matched to O(Reue) 
and 0 < LY < 1. The details are omitted. Since u1 matches to v, (or w ~ ) ,  g2 can 
be determined by matching with them. 

Determination of g,. It can be seen from equation (5u,  b )  that the governing 
equation for g, is a non-homogeneous Oseen equation. In  general, g2 can be 
divided into three parts to be determined separately. 

g, = g;+g;+g:; ( 5 2 )  

g[ is the particular solution of Oseen equations and is 

where 

and tij is the fundamental solution of Oseen equations, 

f(zd) = (g, .a) g, = - g1 x curl g, + +Vgf 

+ig 
A = -  1 1 exp[-+(fi-2)] 

477 [ R €? 
Here 

B = - (1/4n)[l- exp{ - +(I?- 2))]alog (8- li)/aq, 
a2 = 2 2 + q 2 + 2 " 2 .  

Then for the same reason as discussed by Kaplun & Lagerstrom (1957), g: has no 
contribution to drag calculation to the order of 8. 

9; is the solution of the homogeneous Oseen solution and is determined by the 
matching condition that it cancels the unbounded term of 
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for P + 0 and -Re < Z < Re and ord fi in some overlap domain. For Z + 0 and 
ti -+ 0, g;1 has to cancel the unbounded terms of 

Similarily, for P + 0 and 3 -+ 0, it cancels the unbounded terms of 

lim {[i + egl - (w, + ew;)]/e2}. 

By these matching conditions, 9;: is determined as follows: 

It can be shown that g; is correctly determined. The details are given in Shi 
(1963). Similarly 9," can be determined by the matching with u;, V: and w;, 
respectively. Since u;, v;, and w; are symmetrical with respect to the axis of 
revolution of the ellipsoid, 9," will make no contribution to the drag calcula- 
tion. Thus details of the determination of 9," will not be presented here. 

A higher-order solution can be obtained by the use of a matching procedure 
similar to that discussed above. 

Uniformly valid expansion. From the intermediate expansions and the outer 
expansions one can construct an expansion which is uniformly valid for the entire 
flow field. Now the first term qO(Z$, Re), uniformly valid to order unity can be 
constructed by considering v,,, u,, w,, go and g,. From (19), (24), (31) and (36), 
q,,(Z{, Re) can be constructed into the following simple form: 

where c = Re - Re2/2Re. It should be noted that in the present case the source 
distribution for q,, is constant and uniformly distributed within 

- Re i- Re2/2Re < 5 < Re - Re2/2Re. 

The sources are inside the ellipsoid cylinder. But in the outer limit, the source is 
uniformly distributed within -Re < z" < Re and the source comes to the surface 
of the ellipsoid at the two ends. This shows that the outer limit cannot be valid 
near the two ends and the two end limits must be introduced. 
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Computation of drug force. The drag force on the ellipsoid can be obtained either 
by calculating the viscous stresses on the ellipsoid or by the momentum integral. 
In  the present case, it  can be obtained by comparison with the fundamental 
solutions of the Oseen equations (cf. Lagerstrom 1956). The total drag force is 
found to be of the order of 6 where 

E = l/(log (4/Re) - y + +}. (61)  

The drag force can be obtained to the order of c either by calculating the viscous 
stress on the ellipsoid using u,, v,, and w, and the corresponding pressures or by 
comparing g, with the fundamental solutions of the Oseen equations. By com- 
paring g, with the fundamental solutions of the Oseen equations, we can see that 
to the order of E ,  the drag force is constant along the ellipsoid. The drag per unit 
length is the same as that of a two-dimensional circular cylinder; thus the total 

(62) 
drag D, = 8 r p U L ~ .  

The drag forces can be obtained to the order of €2 by calculating the viscous 
stresses and the pressure on the ellipsoid using v,, u, and w,. But since u:, 
v: and w; are symmetrical with respect to the axis of revolution of the ellipsoid, 
they make no contribution to the drag calculation. Thus the drag can be obtained 
by considering u;, v; and w; only. Since ui, v$ and w; are matched to &, the 
drag force can also be obtained by comparing 8;. with the fundamental solutions 
of the Oseen equations. The results are the same for both calculations. In the 
present case, we can see from that the drag force is no longer constant along the 
cylinder to the order of e2. The variation of the singular drag force is easily found 
as 

f,(Z") = +[E,(&Re+&z")+E,(&Re-&z")+log(Re+.Z) 

+ log (Re - 2) - 2 log Re]. (63) 

The last three terms in the above equation depend upon the shape of the body. 
Thus the existence of ends and the variation of the diameter along the axis of 
revolution effects the drag to the order of 19. The total drag force of order can 
be obtained by integration and is 

D, = 8~pUL{E1(Re)+( log2-  l )+( l -ee-He)/Re} .  (64 )  

Then the total drag is 

D = 877pUL (8 + e2[E1(Re) + (log 2 - 1) + ( 1  - ~ - ~ ) / R e l  + O(c3)}, 

C, = (47r/Re) { E  + e2[E1(Be) + log 2 - 1 + ( 1  - ~ - ~ ~ ) / R e l  + O(e3)}. 
(65) 

(66) or 

The corresponding C, for a two-dimensional cylinder (cf. Kaplun 1957) is 

C, = (47r/Re) (e-  0.87e3 + O ( E ~ ) } .  (67 ) 

5. Results and discussion 
In  this paper, solutions for viscous flow past an ellipsoid of revolution of large 

aspect ratio are obtained. The results are valid for small Re and fixed Re. The 
expansion procedures established here should also be valid for other kinds of 
cylinders of large aspect ratio. Although the body is three-dimensional the 
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expansions are in inverse powers of logarithms of the Reynolds number as in the 
case of a two-dimensional cylinder. The drag formula, obtained to the order of e2, 
shows that the leading term is the same as that for a two-dimensional circular 
cylinder. Thus the variation of the diameter along the axis of revolution of the 
ellipsoid has no effect to this order. The difference to the order of e2 is due to the 
variation of diameter along the cylinder. This can be seen from the matching 
between the shank expansion and the outer expansion. If the body is r* = f(Z) 
instead of the ellipsoid but has the same type of ends as the ellipsoid, Shi (1963) 
has shown that the singular drag force variation of order e2 is 

$[El (4Re + 4.2) +El(4Re - 42") + 2 logf(z")]. 

From the above formula, it follows that the cylinder which makes the drag of 
order e2 equal to zero is 

r* = f(Z) = exp[-+E,(+Re+@)-4El(+Re-$Z)] .  

ForZ+-ReorZ= Re+Z+O,wehave 

r+2 = C2z++ O(Re2), (70) 

where C' = (&y,)+exp [ - J$,(Re)]. (71) 

This cylinder also has paraboloidal ends. By actual numerical plotting for large 
Re, this cylinder has a constant radius region in the centre portion of the cylinder. 
In  fact, for Re approaching infinity, the cylinder is of almost constant radius 
except near the ends. The drag of this cylinder agrees with the two-dimensional 
case to order €2. This example should help to verify that the variation of dia- 
meter along the axis of revolution has an effect of order e2 on the drag force. 
Finally, the solutions obtained in this paper are valid for large aspect ratio and 
fixed Re. Naturally there arise some questions about the relation between the 
solutions obtained in this paper and those obtained for small Re and finite aspect 
ratio. These questions may best be answered from the drag standpoint. Without 
going into details, one can obtain the following drag formula from Lamb (1932) 
for Stokes flow past an ellipsoid of revolution with its axis of revolution per- 
pendicular to the uniform flow at infinity: 

Here A = L/h is the aspect ratio. The above formula was also obtained by Cole 
& Roshko (1954). For large aspect ratios, the above formula reduced to the 

(73) 
following formula C, = 4n/Re [log (%/A) + 41, 
when L/h 
(1876).t This formula may be written 

1 but Re < 1. The above formula was first obtained by Oberbeck 

Re CD = 4n/[{log (4/Re) - y + 4} + {log Re + y - log 211, (74) 

which is the same as equation (66) when the log Rellog (4/Re) is small. From 
equation (72) one can study the effects of aspect ratio from order unity to large 

7 The author is indebted to one of the referees for pointing out this formula and suggest- 
ing that this paper conclude with a discussion of this aspect of the problem. 
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value as long as both Re and Re are small. But physically there will be cases 
where Re is not small. The two-dimensional case corresponds to having L or Re 
approach infinity. Intuitively one can feel that in order to connect the two- 
and three-dimensional solutions, the case of finite Re must be studied. The 
reason is that in the two-dimensional case, the cylinder is infinite in both the 
outer limit and the inner limit. Now if Re is small, the ellipsoid shrinks to a 
point at the outer limit and then no matter what the aspect ratio is, the point 
can never produce the disturbance to the outer flow that an infinite cylinder 
does. Since the Oberbeck formula was obtained from solutions of Stokes’s 
equations for large aspect ratios, theoretically it is only valid when both Re 
and Re are small. Whether the Oberbeck formula is valid for large Re is sub- 
ject to question. In  fact, for large L or Re the Oberbeck formula encounters 
trouble both mathematically and physically. In  order to compare it with the 
two-dimensional solution for a cylinder of the same radius in the same viscous 
fluid, we assume Re is small and both Re and A are fixed. Then if the length of 
the cylinder is increased to infinity the Oberbeck formula predicts that the 
drag is zero. Obviously this is not physically possible. On the other hand it is 
not mathematically consistent in that it does not approach the two-dimensional 
drag formula obtained by Proudman & Pearson (1957) and Kaplun & Lager- 
strom (1957) as the length of the cylinder approaches infinity. Therefore, there 
exists a certain region in which the Oberbeck formula is not valid. The results 
obtained in the present paper seem to fill this gap. For Re small, the drag formula 
obtained in equation (66) becomes 

Re CD = 4 4 6  + e2( - log Re - y + log 2) + O(e3)). (75) 

This matches the Oberbeck formula to order e3 in the region where both Re and 
log Rellog (4/Re) are small. There exists an overlap domain between these two 
formulas. Furthermore, the drag obtained from our formula is not zero as L and 
Re approachinfinity. In  fact, the leading term is the drag obtained by Proudman 
& Pearson (1957) and Kaplun & Lagerstrom (1957) for a two-dimensional circular 
cylinder. By comparing our formula with the Oberbeck formula, we can see that 
those terms which are small when Re is small are no longer negligible when Re 
is finite. These termsresult from interaction with the outer flow (i.e. &). Therefore 
the Stokes solution is not valid for Re finite because it does not take into considera- 
tion the outer expansion which is important when Re is no longer small. Now 
by combining (66) and (72) we are able to study the effect of aspect ratio for any 
aspect ratio, for any length of the ellipsoid and any value of Re as long as Re is 
small. At least from the drag standpoint, the results obtained in the present 
paper clarify the relation of drag force obtained from the three-dimensional limit 
which is valid for finite aspect ratio and small Re and the drag force obtained from 
the two-dimensional limit which is valid for infinite aspect ratio and infinite Re. 
I n  principle, the effect of aspect ratio from order of unity to infinity can be drawn 
by using (66) and (72). 

This research, based on one of the examples discussed in the author’s Ph.D. 
thesis at Graduate Aeronautical Laboratories, California Institute of Technology, 
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